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Note 

On Computing the Integral of Glow Curve Theory* 

The integral in question arises in theories of thermoluminescence and thermally 
induced currents. It is F(7’, E) = Ji exp(--E&s)& where T denotes temperature, 
E energy, and k is Boltzmann’s constant. In [I], Chen discusses the evaluation of 
F(T, E) by means of the asymptotic expansion 

F(T, E) m T exp (- -&) g1 (-&)-” (-l)“-l n! 

and recommends that N be chosen as the largest integer less than or equal to E/kT. 
In what follows, this will be called Chen’s method; and for notational convenience 
we will define E/kT = x. 

Researchers in the Lockheed Palo Alto Material Sciences Laboratory studying 
thermally induced currents in microelectronic structures were interested in a potential 
range of 2 < x < 150. Since the asymptotic expansion approach is not valid for small 
x (note that for x = N = 2, Eq. (1) reduces to zero), and N becomes large for large x 
when Chen’s method is used, the author was asked to reexamine the evaluation of 
F(T, E). The purpose of this paper is twofold: to present a reasonable alternative to 
Chen’s method when the asymptotic expansion is used; and to present a new method 
of approximating F(T, E) which is computationally very fast and whose error is 
uniformly bounded by f(2 x lOWa) for all x > 1. 

Returning to the integration by parts which produced Eq. (l), we find 

1(x, N) = F(T, E) - Te-zSN(x) 

= (-1)N (N ‘,;‘! ‘” EN+B(~) (2) 

where S,(x) is the summation appearing in Eq. (1) and 

EN+&) = lm s h’. (3) 

The integral of interest appears in Glow Curve Theory as a multiplicative factor of the 
form 

ev ( - ; W’, El), (4) 
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where b is an experimentally controlled heating rate and T has units of time. It follows 
then that the real concern is to bound the relative error in approximating Eq. (4), i.e., 
we wish to have 

exp(-(l/W FU’, 9) - ew(-V-VT) ~I&)) 
ew(- (l/W FV, El> 

( p 3 (5) 

where p is under the experimenters control. Assuming an even number of terms of the 
asymptotic expansion are used, Eqs. (2) and (5) lead to the requirement that 

Z(x, N) < b7 In (1 + p). (6) 

It is known (see [2, Chap. 51 that EN+&) satisfies the inequalities l/(x + N + 2) < 
e3FEN+,(x) < l/(x + N + 1); therefore from Eqs. (2) and (6) it becomes reasonable 
to seek for an (even) integer N such that 

is satisfied. Note that the Nth term of the asymptotic expansion, except for sign, is 
N!/xN. It is therefore a simple one-step operation to check the third inequality in (7). 
The proposed modification to Chen’s method is now simply stated: Stop the computa- 
tion of the asymptotic expansion terms at the first even integer, if any, for which that 
inequality is satisfied. This method, which we will call the Modified Asymptotic 
Expansion (MAE) method, was programmed to run on a minicalculator (HP 9820) in 
such a way that it retreats to Chen’s method when p is sufficiently small. Results will 
be discussed later in the paper. 

We now return to the original integral J’(‘(T, E). It was fortuitously discovered that 

F(T, E) = l’ exp (- g) ds = T (e-” - x 1: 5 &). 

(The substitution s = E/ky yields F(T, E) = E/k sr e-“y-2 dy. Integrating by parts, 
JU dv, with u = -( y/2)e-“, dv = -(2/y-“) dy yields after some algebraic manipula- 
tion, Eq. (8)-recall that x = E/kT.) The integral in (8) has been extensively studied 
in the open literature where it is identified as E,(x) or -Ei(-x) [2, 31. Specifically in 
[2, 31 there is presented a Tschebyscheff rational approximation of E,(x) of the form 
xe$E,(x) = R(x) + E(X), where R(x) is the quotient of two fourth-degree polynomials, 
and E(X), the error associated with the approximation, oscillates between j-(2 * lO-s) 
for all x > 1. Five of the nine zeros of the error curve are inside the interval (2, 150). 
Writing R(x) = A(x)/B(x) and substituting into Eq. (S), we obtain the particularly 
simple, easily computed approximation 

F(T, E) w Te+(l - A(x)/B(x)). (9 
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The coefficients of A(x) and B(x), taken from [2], are listed in Table I. 

TABLE I 

Coefficients of A(x) and B(x) 

A(x) = f; a# B(x) = -f b,x’& 
n-0 n-0 

a, = 0.2677737343 b, = 3.9584969228 
a, = 8.6347608925 bl = 21.0996530827 
a, = 18.0590169730 b, = 25.6329561486 
a, = 8.5733287401 b, = 9.5733223454 
a,= 1 b,- 1 

The relative error associated with using Eq. (9) is not investigated here since there is 
a convergent series representation for E,(x) (see, e.g., [2]). This series was programmed 
to run on a minicalculator (the HP 9820) and a direct comparison was made between 
Eqs. (8) and (9) for x in the interval 2 < x < 6, an interval which contains two of the 
extrema of the error function e(x). Sufficiently many terms of the series were used to 
evaluate Eq. (8) correctly to 10 decimal digits, the output capability of the calculator. 
The results of this comparison can be summarized as follows: In a neighborhood of 
the extrema, the first five decimal digits agree; away from the extrema, up to eight 
decimal digits are in agreement. The absolute error associated with Eq. (9) is a constant 
times 1 &)](e-Z/x) which decreases as x increases, so we would expect even better 
agreement near the other extreme values of E(X). 

The three methods of computing F(T, E) were compared in a manner which we will 
now discuss. By restricting attention to only integer values of x, both the Chen and 
MAE methods could be programmed to calculate in a very efficient manner; that is, 
both become a simple evaluation of C(- I)n n ! x-” for n = 1 to x in Chen’s method 
and to <x for the MAE method (the multiplicative factor Te-“, common to all the 
methods, was suppressed). Since the method of Eq. (9) is known to be the most 
accurate for small x, it was selected as the reference and comparisons were made of 
the basis of the number of decimal-digits-of-agreement (DDA). The interval 5 < x < 
30 was selected. The MAE method, with br = 1 and p = 1O-5 in Eq. (7), retreated 
to the Chen method for 5 < x < 13, and in this interval the DDA increased from 1 
to 3. The DDA for the Chen method continued to increase to 6 at x = 21, and 
remained constant thereafter. The DDA for the MAE method remained at 4 for 
14 < x < 25 but used fewer terms as x increased; for example, only six terms were 
used for 17 < x < 25. For 25 < x < 30, the DDA decreased to 3. The method of 
Eq. (9) required 5 set of computing time for the 26 cases, Chen’s method needed 72 set, 
and the MAE xequired 34 sec. 

A referee has kindly pointed out that there are even more accurate approximations 
to E,(x) (and E,(x)) available in the open literature [4, 51; however, the fourth-order 
method discussed above has been proven to provide sufficient accuracy for the 
Lockheed Microelectronics experimental work. 
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